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Input Generation (left→right: time steps)

Figure 1. PhysGen3D generates realistic, physically plausible motion from a single image and a text prompt by reasoning about geometry,
semantics, and material properties. (a) An apple rolls under the influence of its initial velocity, friction, and shape, producing a natural
progression over time. (b) Three animal figures interact dynamically, colliding after being propelled upwards and forwards. (c) A toy potato
bounces back with soft-body dynamics in response to an initial downward force, capturing material-specific behaviors. PhysGen3D lets
users quickly explore physics-driven object interactions and behaviors in a compact virtual scene generated from a single input image.

Abstract

Envisioning physically plausible outcomes from a sin-
gle image requires a deep understanding of the world’s
dynamics. To address this, we introduce PhysGen3D, a
novel framework that transforms a single image into an
amodal, camera-centric, interactive 3D scene. By combin-
ing advanced image-based geometric and semantic under-
standing with physics-based simulation, PhysGen3D cre-
ates an interactive 3D world from a static image, enabling
us to "imagine" and simulate future scenarios based on
user input. At its core, PhysGen3D estimates 3D shapes,
poses, physical and lighting properties of objects, thereby

capturing essential physical attributes that drive realistic
object interactions. This framework allows users to specify
precise initial conditions, such as object speed or mate-
rial properties, for enhanced control over generated video
outcomes. We evaluate PhysGen3D’s performance against
closed-source state-of-the-art (SOTA) image-to-video mod-
els, including Pika, Kling, and Gen-3, showing PhysGen3D’s
capacity to generate videos with realistic physics while
offering greater flexibility and fine-grained control. Our
results show that PhysGen3D achieves a unique balance
of photorealism, physical plausibility, and user-driven in-
teractivity, opening new possibilities for generating dy-
namic, physics-grounded video from an image. Project page:
https://by-luckk.github.io/PhysGen3D.
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1. Introduction
Photographs capture snapshots of our physical world, pre-
serving specific moments in time but leaving out the alterna-
tive outcomes that could have unfolded. For instance, look-
ing at a photo, we might wonder, “What if I poke the apples
to make them roll across the ground?” or “What if I squeeze
the three stuffed animals closer together?” or “What if I
drop my cute potato toys onto the floor?” Humans intuitively
understand how these scenarios would play out because we
have an innate sense of the physical world beyond what we
see in a single image. We develop a computational model
that can answer such "what-if" questions by generating video
outcomes from a single static image.

A promising approach toward this goal is data-driven
image-to-video (I2V) generation [17, 18, 29, 63, 70, 77, 87].
I2V leverages diffusion-based generative models trained on
vast datasets of internet images and videos, enabling the
production of photorealistic videos with remarkable detail.
However, I2V still has limitations in precise control and
lacks physical grounding. As a result, users cannot interact
freely and accurately to achieve specific physical effects, nor
can I2V guarantee physical realism.

On the other hand, recent research has focused on mod-
eling the physical world from visual inputs to create digital
twins, allowing for precise interactions [43, 84, 96, 100].
These approaches can generate virtual scenes with convinc-
ing physical interactions, but they typically require complete
3D scans from multi-view images or depth sensors, making
them data-intensive. While some methods [44, 49, 68] en-
able interaction with a single image, they are often limited
by physical constraints (e.g., rigid bodies or springs), spe-
cific object types (e.g., waterfalls), or a 2D scope. This gap
highlights the need for a generic, controllable, physically
grounded, and photorealistic approach to generate video
from a single image while maintaining physical realism.

In this work, we introduce PhysGen3D, a novel frame-
work that transforms a single image into an amodal, camera-
centric, interactive 3D scene, enabling realistic simulation
and rendering. Our approach combines the strengths of
image-based geometric and semantic understanding [40, 60,
69, 74, 86] with physics-based simulation [31–33]. At its
core, PhysGen3D is a digital twinning method that estimates
an object’s 3D shape, pose, physical and lighting properties,
infers background geometry and appearance, deduces physi-
cal characteristics, and performs dimensional analysis—all
from a single input image. This task is conventionally chal-
lenging due to its inherently ill-posed nature. To tackle this,
we leverage various pretrained vision models, integrating
their outputs to create an image-centric digital twin.

For physical simulation, we employ material point meth-
ods [30, 37], a robust point-voxel-based framework that
models counterfactual physical behaviors of objects in the
image. Through precise inference of physical properties,

simulations in the PhysGen3D environment achieve a high
degree of realism and stability. We further enhance realism
by applying physics-based rendering, seamlessly integrating
dynamic effects back into the original image. PhysGen3D
produces results that are not only visually realistic in terms
of dynamics and lighting but also highly controllable, allow-
ing users to specify initial conditions like speed and material
properties. Due to the use of large pretrained models, our
pipeline operates effectively without task-specific training.

Our experiments, based on a carefully designed and rigor-
ous user study, demonstrate that, compared to closed-source
state-of-the-art video AIGC models such as Pika, Kling, and
Gen-3, our framework provides significantly more flexible
control over object motions, generates videos that better
align with user intentions, and achieves superior physical re-
alism—all while maintaining comparable rendering quality.

2. Related work

Single-view 3D reconstruction Great progress has been
made in object-centric single view 3D reconstructions [46,
47, 64, 86]. However, applying these techniques to single-
view 3D scene reconstruction becomes more challenging.
Most existing works only focus on one part of 3D scene
understanding. Geometric approaches reconstruct the 3D
scene holistically but neglect individual object understand-
ing, or they focus solely on foreground objects without con-
sidering the interaction of objects with the complex environ-
ment. Additionally, works have been done for scene relight-
ing [50, 97, 99] and segmentation [40, 48, 60, 88, 101], but
none of these provide a full 3D understanding within the
image. In our work, we also perform perception reasoning
for object materials, backgrounds, rendering properties, and
physical stability.

Controllable video generation. Video generation has
made significant progress in recent years [5, 9, 10, 15, 21,
23, 25, 28, 41, 56, 65, 72, 76, 85, 93, 95]. The state-of-
the-art framework [1, 3] can generate photorealistic and
coherent videos from text instructions using diffusion mod-
els [27, 57, 61, 66, 67]. Controllable video generation is
achieved through leveraging pre-trained video generation
models with conditioning information, including but not
limited to depth maps [13, 89], linear translation [39], lay-
outs [45, 73, 90], and multiple combinations [52]. However,
most existing generation methods implicitly generate image
space dynamics, which might lead to unrealistic, halluci-
nated motions. In contrast, our method explicitly controls
the motion and interaction with simulation, allowing us to
create more sophisticated effects without the need for exten-
sive training data. Our approach is training-free and general-
izable to all objects in the world.
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Figure 2. Method Overview. PhysGen3D’s framework consists of three modules: a) 3D world creation, which infers geometry, semantics,
rendering and physical parameters from the input image; b) dynamics simulation using Taichi-Elements for particle-based physics; and c)
physics-based rendering with a two-pass shadow mapping technique.

Controllable image animation Image-based animation
aims to animate objects that appear in images. Numerous
works [17, 18, 29, 63, 70, 77, 87] have focused on this task.
To improve quality, recent research has adopted data-driven
solutions, training temporal neural networks to directly pre-
dict subsequent video frames [6, 14, 19, 24, 29, 75], or in-
corporating physical heuristics [17, 36]. Recently, there
has been increased focus on interactive [7, 8, 44] and con-
trollable [4, 18] image-to-video synthesis. Additional pri-
ors such as motion fields [19, 29, 53, 54, 68, 87], optical
flow [11, 22, 98], 3D geometry information [59, 79], and
user annotations [44] have also been introduced. The clos-
est work to ours is Liu et al. [49], which focuses on image
understanding and uses an existing 2D rigid simulator to
generate 2D animations. However, their approach is limited
to 2D dynamics, does not account for real-world 3D physics,
and is restricted to rigid bodies. In contrast, our method
provides more realistic and flexible control over 3D motions
and object materials and extends beyond rigid-body physics.

3. Approach

Our goal is to reconstruct an interactive, camera-centric
miniature world from a single input image. We aim to con-
trol object materials, dynamics, and motions to simulate
diverse, photorealistic, and physically plausible videos from
user input. The key challenge lies in partial observations and
the ill-posed nature of physical reasoning without observed
dynamics. To address this, we propose a holistic recon-
struction method leveraging large pretrained visual models
to jointly infer geometry, dynamic materials, lighting, and

PBR materials from a single image (Sec. 3.1). The recon-
structed scene is input into a material-point-method (MPM)
simulator to generate realistic physics phenomena (Sec. 3.2).
Finally, we render dynamic object behaviors based on the
simulation and reintegrate them into the scene, producing re-
alistic videos with accurate appearance and motion (Sec. 3.3).
Fig. 2 depicts our framework.

3.1. Interactive 3D World from a Single Image

A full amodal reconstruction of the 3D world depicted in the
image is critical for the next step in simulation. An ideal
reconstruction should capture a comprehensive understand-
ing of objects’ relationships, geometry, appearance, material,
and physical properties. However, obtaining this understand-
ing from a single image is highly ill-posed. Our key idea is
to leverage priors from pretrained vision foundation models
to help infer these properties, as shown in Fig. 2.

Segmentation. We leverage vision foundation models to
recognize object categories and segment object instances.
Specifically, we use GPT-4o [92] to identify the foreground
object categories and use Grounded-SAM [40, 48, 60] to
further detect and segment each individual instance {oi ∈
RW×H×3}Ni , where oi is the image of i-th object.

Mesh Generation. Unlike previous work [49], which
used only 2D rigid-body physics, we extend to general-
purpose 3D simulation. This requires a complete 3D repre-
sentation of foreground objects. We adopt InstantMesh [86],
which uses Zero123++ [47, 64] to synthesize multi-view
images from the segmented object image oi and uses these
images to reconstruct the 3D mesh O of the objects. For
multiple object occlusions, we adopt the iterative inpainting
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strategy to extract the 3D mesh of the objects (see supp for
more details).

Background Handling. The background serves impor-
tant roles in both dynamic simulation and rendering. In sim-
ulation, background geometry acts as a support and collider,
where accuracy ensures realistic object-scene interactions. In
rendering, it serves as a static backdrop while the foreground
objects move and helps simulate realistic global illumination
effects like cast shadows. For simulation purposes, we use
Dust3r [74] to estimate iamge depth. The output depth map
z ∈ RW×H is unprojected to the 3D world as a 3D point
cloud P , and Bilateral Normal Integration [12] is applied
to generate a smooth surface S serving as the collider. For
rendering, to fill background regions occluded by moving
objects, we use the LaMA inpainting model[69]. This model
generates a complete background after masking out all ob-
jects and their shadows.

Object Pose and Scale Estimation. The generative 3D
reconstruction step provides a complete mesh with a nor-
malized scale in an object-centric coordinate system, but it
does not infer the object’s location and scale in the camera
coordinate. To ensure coherence with the input image, it
is necessary to accurately place the 3D meshes O into the
3D scene P with the correct scale and 6DoF pose. This
registration task is challenging, as the generated object mesh
may not perfectly match the real-world object in the image.

To address this challenge, we designed a multi-stage
coarse-to-fine alignment strategy. In the coarse stage, we per-
form 2D-3D feature point matching. Firstly, we render multi-
ple images from viewpoints uniformly distributed over a unit
sphere surrounding the object. For each rendered image, we
match its feature points with the original object image oi us-
ing SuperGlue [62], and the viewpoint with the most matches
is selected. Matched pairs (p′Ni ∈ R2, pNi ∈ R2) are then
projected back into 3D points (P ′N

i ∈ R3, PN
i ∈ R3) in ob-

ject and camera coordinate, respectively. Perspective-n-Point
(PnP) algorithm [20] is applied between P ′N

i and pNi in im-
age oi to estimate the 6DoF pose with scale ambiguity. Then
we adjust the scale and translation factor simultaneously
to minimize the L2 loss

∑N
i = ||PN

i − P ′N
i ||2, without

altering its projection.
In the fine alignment stage, we render the mask and depth

on the image plane using the current estimation through
a differentiable renderer and jointly minimize two losses:
L = Ldice + Ldepth. Here, Ldice = 1 − 2×|MA∩MB |

|MA|+|MB | mea-
sures the discrepancy between the rendered mask MA and
the observed mask MB from Grounded-SAM. The depth
consistency loss is Ldepth = mse(MB∗zA−MB∗zB)

|MB | , where
zA and zB are the rendered and Dust3r-predicted depths.
This joint optimization ensures consistency between the es-
timated mesh in the camera coordinate and the point cloud
from Dust3r, while maximizing the alignment between the
3D pose and observed object mask, ensuring accurate simu-

lation and rendering alignment.
Appearance Optimization. The texture of the gener-

ated 3D meshes may differ from the input image. To
enhance rendering quality, we use the inverse rendering
pipeline in Mitsuba3 [35] to estimate material properties.
Lighting parameters are estimated with DiffusionLight [58],
while object PBR materials (albedo, roughness, and metal-
lic) are optimized via differentiable rendering. To han-
dle unknown back views and reduce complexity, we as-
sume uniform roughness and metallic values per object
and apply tone mapping for albedo optimization: y(x) =
ax3 + bx2 + cx + d, where y(0) = 0, y(1) = 1. With
reconstructed lighting and ground surface, the optimized ma-
terials improve asset appearance, capturing realistic object-
surface interactions during rendering.

Physics Reasoning. Accurately simulating real-world
dynamics requires estimating physical parameters. We focus
on two aspects: 1) Following [82], we use GPT-4o to query
each object’s elasticity and density, and the friction coeffi-
cient for the surface S . 2) We ensure reconstructed 3D assets
match real-world proportions, as depth inaccuracies from
Dust3r can cause unrealistic behaviors. To address this, we
estimate a scale factor k by comparing asset size with typical
real-world sizes from GPT-4o and use k for dimensionless
scaling of gravity and velocity-related parameters.

3.2. Dynamics Simulation

Given the 3D assets with reasoned physical properties and
the scale factor, we use the physics engine Taichi Elements
[31–33], based on the Material Point Method (MPM) [37],
as our simulator to support a variety of different materials,
including but not limited to rigid, soft, and granular.

Particle representation. The simulator is based on a
particle-based representation. To convert our 3D assets into a
simulatable particle-based representation, we apply floating
points removing, internal filling and voxel downsampling.
We use downsampling to handle uneven particle distribu-
tions, where downsample rate is adjusted according to the
grid size of the simulator. For the convenience of rendering,
we prioritize surface points.

Physical parameters. To enhance stability, we apply the
scale factor k to physical parameters in simulator instead of
scaling the assets to real size. For example, the gravitational
acceleration is multiplied by k, making to k ∗9.8 (nondimen-
sionalized here). With this tuning, the motion of falling or
collapse remains realistic for all scales.

External disturbance. For each object, we set a different
initial velocity based on the user input to make the object
move as specified by the user.

Other Visual Effects. Besides real world physics sim-
ulation, our pipeline allows special effects like collapsing
and melting. To simulate different materials (rigid, soft, or
granular), we can easily change the material type to modify
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Input Generation (left→right: time steps)

Figure 3. Video generation results. Left: Input initial frame. Right: Generated future frames. We apply an initial velocity to each movable
object and use the physically grounded parameters outlined in 3.2 to generate physically plausible results.

the physical properties of an object. This approach provides
more flexibility for the user to edit the scene.

3.3. Physics-Based Rendering

After dynamics simulation, we obtain object point trajecto-
ries and apply motion interpolation to compute vertex mo-
tions, deforming the mesh accordingly. With optimized PBR
materials, we use Mitsuba3 for Physically-Based Render-
ing under environment lighting. Following prior insertion
rendering work [16, 38, 78, 91], we avoid converting the
entire static background into the rendering pipeline. Instead,
we build a 3D shadow catcher surface from the background
depth. During rendering, no texture is applied to the back-
ground; two-pass shadow mapping extracts shadows and
global illumination effects. The foreground objects and shad-
ows are then composited onto the inpainted background to
produce the final video with realistic lighting.

4. Experimental Results
4.1. Setups

The test images come from a diverse set of our own pho-
tography, online collections, and generative models. Our
pipeline is primarily designed for object-centric scenes with
one or a few objects. Due to our limitations (Sec. 5), we
excluded those with excessive objects, heavy occlusion be-
tween objects, or highly uneven surfaces.

Post-processing. We used VEnhancer [26] as an optional
post-processing module, which takes the produced video
and a text prompt to perform enhancement. As shown in
Table 2, while it restores some details, it also introduces
extra hallucinations.

Baselines. Our method is one of the first of its kind, as
existing model-simulate approaches require multi-view im-

ages [81, 83, 96] or specific settings [44, 49, 68]. Therefore,
we evaluate ours against Image-to-Video (I2V) models: two
open-source motion controller models DragAnything[80],
MOFA-Video[55] and three state-of-the-art (SOTA) commer-
cial models Kling 1.0 [3], Gen-3 [2], and Pika 1.5 [1]. We
manually set correct motion trajectories and select applied
regions for DragAnything, MOFA-Video and Kling to pro-
vide privileged motion guidance. We give text descriptions
to Pika 1.5 and Gen-3, as they lack direct motion control
capabilities. Additionally, Pika 1.5 offers "Pikaffect" effects,
such as "Melt it" and "Deflate it."

4.2. Results

Our system generates a miniature interactive world from a
single image, enabling the simulation of various phenom-
ena. Fig. 3 presents videos generated from different types
of images. These images encompass single or multiple ob-
jects and various physical materials (i.e., rigid or soft). We
also show applications like dynamic changes, object editing,
and dense 3D tracking, illustrating the adaptability and cre-
ative potential of our approach for generating customized,
interactive video content.

Comparisons. We compare the results in two dimensions:
motion control alone and physical materials. Fig. 4 shows
that our system produces more physically plausible and con-
trollable videos compared to SOTA I2V models. Despite
prompt tuning, learning-based models often hallucinate, fail-
ing to adhere to physical laws or user intent. For example,
in the toy dog case, we manually adjust the material and
accurately simulate a collapse, whereas other models fall
short. Similarly, for the book case, our results are the most
physically realistic.

Dynamics. Fig. 5 demonstrates the varying dynamics
generated from the same input image, highlighting the high
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Figure 4. Qualitative comparison. We compare videos generated from our framework with three state-of-the-art I2V models: Gen-3 [2],
Pika [1] and Kling [3]. We carefully designed the prompt to describe the motion outcome, and uses motion brush to control Kling. Our
framework employs initial velocity control. Results show that our method can follow text instructions while maintaining plausible physics.

controllability of our method over physical parameters and
motion trajectories. In the three rows on the left, we set
different elasticities for the two objects, while keeping their
initial positions and velocities the same. In the three rows
on the right, we alter velocity directions of the objects and

keep physical parameters the same.

Editing. Our method enables modifications to videos
by removing, adding, or replacing objects, as illustrated in
Fig. 6. The generated 3D assets can be easily manipulated,
allowing for diverse video edits.
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Different
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Figure 5. Dynamics Effects. We can generate various dynamics from the same input image. The left three columns share the same initial
positions and velocities, but are in different materials. The right three columns have the same material, but defer in velocity directions. This
showcases the potential of our method for generating diverse physical scenarios.

Input Generation (left→right: time steps)

Figure 6. Video edition. As illustrated, our method supports video editing. In the top row, we remove the chair and allow the toy to fall from
a static position. In the bottom two rows, we exchange one object between two scenes while keeping the other unchanged. This demonstrates
the great flexibility of our video generation approach.

Tracking. Our framework uses an explicit 3D representa-
tion and works with a particle-based physics simulator. This
allows our method to easily create videos with detailed 3D
tracking results. Fig. 7 showcases two examples, demonstrat-
ing the accuracy and reliability of the tracking in different
scenarios.

Ablation. Each step we designed in perception, simu-
lation and rendering is intended to mimic the real world.
Fig. 8 shows the results of ablation study involving position

optimization and inverse texture. Without pose optimization
using differentiable rendering, the two objects are roughly
at the initial place shown in input image, but cannot fully
replicate the scene. Without inverse texture, the generated
object mesh does not match the input in terms of color tone
and brightness. We also conducted ablations on point sam-
pling. However, without sampling, a large number of points
become crowded in several MPM simulation grids, causing
the simulator to crash and fail to produce final outputs.
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Figure 7. Dense 3D Tracking. Our method can naturally generate
videos with dense 3D tracking results. Here we show tracking
results for collapse and bounce cases.

Input W/o Inverse Texture Final RenderingW/o pose optimization

Figure 8. Ablation study. Without pose optimization, the two
objects cannot fully replicate the scene. Without inverse texture,
the object mesh does not match the input color.

Table 1. Human Evaluation Results. The three criteria are: Physi-
cal Realism, Photorealism and Semantic Consistency

Methods PhysReal PhotoReal Align

Kling 1.0 [3] 2.811 3.566 2.467
Runway Gen-3 [2] 2.283 3.582 1.886

Pika 1.5 [1] 2.412 3.314 2.016
Ours 3.707 3.411 3.866

Table 2. VBench Scores and GPT-4o Evaluation Results. Motion
and Imaging refers to Motion Smoothness and Imaging Quality
scores in VBench. The three criteria on the right are the same as
Table 1, with results given by GPT-4o.

Methods Motion↑ Imaging↑ PhysReal↑ PhotoReal↑ Align↑
Kling 1.0 0.996 0.671 0.563 0.874 0.596

Runway Gen-3 0.991 0.723 0.141 0.896 0.144
Pika 1.5 0.994 0.671 0.544 0.863 0.563

MOFA-Video 0.994 0.634 0.384 0.764 0.304
DragAnything 0.985 0.428 0.645 0.756 0.380

Ours 0.995 0.666 0.752 0.867 0.796
Ours+VEnhancer 0.994 0.677 0.766 0.880 0.745

4.3. Quantitative Comparison

To assess the quality of the generated videos, we performed
human evaluation, GPT-4o evaluation and provided two
VBench[34] evaluation scores.

Benchmarks. We designed three criteria for human and
GPT-4o evaluation. (1)Physical Realism (PhysReal) mea-
sures how realistically the video follows the physical rules
and whether the video represents real physical properties
like elasticity and friction. (2) Photorealism (Photoreal)
assesses the overall visual quality of the video, including the
visual artifacts, discontinuities, and how accurately the video
replicates details of light, shadow, texture, and materials. (3)
Semantic Consistency (Align) evaluates how well the con-
tent of the generated video aligns with the intended meaning
of the text prompt. We also chose two Quality Scores in
VBench: Motion Smoothness and Imaging Quality.

Details in evaluation. Following a similar methodology

Input Rendered Input Rendered

Figure 9. Limitations. The first set of two images show rendering
errors: extreme lighting and heavy shading cause incorrect painting
and artifacts from the pillow penetrating the ground. The second
set reveals simulation limitations: the MPM method struggles with
fine details, such as the thin kettle handle, leading to failures.

to [49], we designed a questionnaire with 27 videos covering
various scenes, motion conditions, and effects. Each video
includes an input image, a motion prompt, and outputs from
three SOTA commercial baselines and ours, shown in ran-
dom order. 31 participants rated three criteria on a five-point
scale from strongly disagree (1) to strongly agree (5). We
also evaluated all five baselines and our diffusion-enhanced
version using GPT-4o and VBench. GPT-4o assessed videos
on the same criteria based on 10 evenly sampled frames, with
the input image and prompt provided. We used GPT version
gpt-4o-2024-08-06, with detailed prompts in the supp.

Result analysis. The results in Table 1 demonstrate
our ability to generate physically accurate and controllable
videos. In physical realism (PhysReal) and semantic consis-
tency (Align), our method achieves the highest scores and
outperform all the commercial models by a large margin. Ta-
ble 2 presents the results of GPT-4o and VBench evaluation.
GPT score is aligned with human evaluation, and we also
beat open-sourced in VBench. Among the baseline models,
Kling 1.0 performs the best overall, likely due to its use of
the "motion brush", which specifies motion trajectories.

5. Limitations
Our single-image-based interactive miniature world is de-
signed for object-centric scenes with simple spatial geome-
try and inter-object relationships. Reconstructing complete
scenes for more complex scenarios remains an open chal-
lenge. Fig. 9 illustrates several failure cases, such as ren-
dering errors under challenging shading, perception failures,
and simulation limitations. More detailed analysis on limita-
tions can be found in the supp.

6. Conclusions
We present PhysGen3D, a framework that transforms a static
image into an interactive 3D scene for simulating and ren-
dering future motions based on user input. PhysGen3D in-
tegrates modules for 3D world reconstruction, model-based
dynamic simulation, and physics-based rendering to gen-
erate realistic, controllable videos. By extending the 2D
image-to-video paradigm to 3D, PhysGen3D enables more
realistic motion and diverse material behaviors. We hope
this work inspires future research.
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PhysGen3D: Crafting a Miniature Interactive World from a Single Image

Supplementary Material

In the supplemental materials, we present additional de-
tails about our PhysGen3D framework App. A, more details
of our experimental design App. B.1, more quantitative and
qualitative results App. B.3, and various applications of our
system App. B.4. Furthermore, we invite the reviewers to
check a local webpage in the supplemental materials ac-
cessed by index.html, to see our generated videos.

A. Additional Details of PhysGen3D
We provide additional details about our framework, specif-
ically on how we handle multiple object occlusions during
the mesh generation stage, how we address background com-
pletion concerning objects and their shadows, the detailed
prompt used in physics reasoning, and further specifics about
the physical simulator utilized in our approach.

A.1. Mesh Generation

To reconstruct a 3D foreground object, we require a complete
and clearly segmented object image oi. For scenarios with
multiple object occlusions, we employ an iterative inpainting
and segmentation strategy, as illustrated in Fig. 10. We
first identify all the target objects using GPT-4o. In cases
where occlusions are detected, the objects are segmented and
inpainted sequentially, progressing from the foreground to
the background. Each subsequent segmentation step builds
upon the removal of previously processed objects, ensuring
accurate and unobstructed reconstruction.

A.2. Background Handling

Shadow significantly impacts the quality of background in-
painting if not masked properly. Existing shadow removal
methods [42, 51, 71] typically detect and remove all shad-
ows indiscriminately. However, our goal is to remove only
the shadow related to a specific object. To achieve this, we
adopt a straightforward method: we first segment regions

Input Inpaint Iter 1 Inpaint Iter 2

Figure 10. Iterative Inpainting. Left: Input image. Middle:
Inpainting result after 1 iteration, where the toy is masked and
inpainted. Right: Inpainting result after 2 iterations, where the chair
is masked and inpainted. The second result is used as background.

where brightness values fall below a certain threshold to
identify shadows. For each object, we determine the largest
connected component that includes both the object and its
shadow. Then, we dilate this mask with a kernel of size 50
and apply inpainting. Developing more adaptable, per-object
shadow removal techniques is left as future work.

A.3. Physics Reasoning

basicstyle=, backgroundcolor=, frame=single,

breaklines=true, breakatwhitespace=true, columns=flexible,

We use GPT-4o to reason the physical parameters
for each object and the surface. The prompt and an
example answer are as follows. [caption=Prompt used
for GPT-4o physics reasoning] Answer each question
for each object in the picture, using one word or num-
ber, separated by commas. For numbers, do not use
scientific notation. Provide answers in the following
format for each object: ’Object number, name, density in
kg/m3, Y oung′smodulus(soft/medium/hard), sizeinmeters, requiresinternalfilling(yes/no).′Iftherearemultipleobjectsinthepicture, respondforeachobjectonanewlineinthespecifiedformat.Whatiseachobject′sname(oneword)?Whatisitsdensityinkilogramspercubicmeter?WhatisitsY oung′smodulusinPa?(Choosefrom :
Soft : Materialslikeplushtoys, foam, orfabric.Medium :
Materialslikerubberorsoftplastic.Hard :
Materialslikewood,metal, orhardplastic)Whatisitssizeinmeters?DoestheobjectrequireinternalfillingforMPMsimulations(yes/no)?

Estimate the roughness of the supporting surface in the
picture, such as tables, floors, or any other horizontal sur-
faces that can act as supports. Provide answers in roughness
value (0 to 1, where 0 = perfectly smooth and 1 = extremely
rough)’.

[caption=Example answers from GPT-4o] 1,
cameramodel, 200, soft, 0.15, yes2, camera, 2700, hard, 0.20, no0.2

In our observation, GPT-4 often provides unstable results
for the exact value of Young’s modulus, with discrepan-
cies spanning several orders of magnitude. To address this,
we defined three categories—soft, medium, and hard—to
guide GPT’s classification. In the simulator, the elasticity
E does not directly correspond to the real Young’s modulus.
Based on experience, we associate the three categories with
E = 5× 104, E = 5× 105, and E = 5× 106, respectively.

A.4. Dynamics Simulation

For simulation stability, we fix the size of the simulator to
2 and the resolution to 256. Since the target object’s scale
varies from several centimeters to tens of meters, we align
the object with the reconstructed scene and fit it into the
simulator. To simulate real physics, we scale the physical
parameters accordingly. Suppose the reasoned real size of
the object is s0, and the scaled mesh has size s′. Then, the
scaling factor is k = s′

s0
. In the simulator, we set gravity

to g′ = k × g0 = k × 9.8. The elasticity of each object is
also scaled: E′

i =
Ei

k . (According to dimensional analysis,
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Young’s modulus is inversely proportional to the scale of
length.)

We use Taichi Elements [31–33] for Material Point
Method (MPM) simulations and modify it to support in-
homogeneous materials. MPM is a computational technique
used to simulate the behavior of continuum materials. The
governing equation of motion is:

ρ
Dv

Dt
= ∇ · σ + fext,

where:
• ρ: Density of the material,
• v: Velocity field,
• σ: Cauchy stress tensor,
• fext: External forces per unit volume.

To be specific, MPM combines the strengths of La-
grangian and Eulerian methods by representing materials
as discrete particles while performing computations on a
background grid. The key steps of MPM are particle-to-grid
(p2g) and grid-to-particle (g2p) transfers.

Particle-to-Grid (p2g) Transfer. This step transfers parti-
cle properties (mass, momentum, etc.) to the grid.

Mass Transfer. Grid mass is computed by distributing
particle mass mp to nearby grid nodes using weighting func-
tions w:

mi =
∑
p

w(xp − xi)mp,

where:
• mp = ρpVp: Particle mass (density ρp, volume Vp),
• w: Quadratic kernel for interpolation.

Momentum Transfer. Momentum is transferred to the
grid using the same weight:

vi =

∑
p w(xp − xi)vpmp

mi
,

where:
• vi: Grid velocity,
• vp: Particle velocity.

Stress Contribution. The stress tensor σ contributes force
to the grid momentum. Using the deformation gradient F ,
the stress is defined as:

σ = 2µ(F −R)F⊤ + λJ(J − 1)I,

where:
• µ and λ: Lamé parameters,
• F : Deformation gradient,
• R: Rotation matrix from SVD (F = RS),
• J = det(F ): Determinant of F ,
• I: Identity matrix.

The Lamé parameters λ and µ are computed from Young’s
modulus E and Poisson’s ratio ν as follows:

λ =
Eν

(1 + ν)(1− 2ν)

µ =
E

2(1 + ν)

where:
• E: Young’s modulus, which describes the material’s stiff-

ness,
• ν: Poisson’s ratio, which defines the ratio of lateral strain

to axial strain.
Grid Velocity Update. The grid force due to stress is

given by:
fi = −

∑
p

w′(xp − xi)Vpσp.

Newton’s second law updates grid velocities:

vn+1
i = vn

i +∆t
fi
mi

,

where ∆t is the time step.

Grid-to-Particle (g2p) Transfer This step interpolates
updated grid data back to particles and updates their states
(e.g., velocity, deformation).

Velocity Interpolation. Particle velocities are updated by
interpolating grid velocities:

vn+1
p = vn

p +
∑
i

w(xp − xi)v
n+1
i .

Affine Velocity Field. Affine velocity updates capture
velocity gradients from the grid:

Cp =
∑
i

4
w(xp − xi)

∆x
vi ⊗ (xi − xp).

Deformation Gradient Update. The deformation gradient
Fp evolves based on the velocity gradient:

Fn+1
p = (I+∆tCp)F

n
p ,

where I is the identity matrix.
Advection. Finally, particles are advected using updated

velocities:
xn+1
p = xn

p +∆tvn+1
p .

B. Additional Details of Experiments
Our experiments are designed to compare with the most
competitive baselines using multiple evaluation metrics, in-
cluding human evaluation and GPT-based evaluation. Due to
page limitations in the main paper, we provide detailed infor-
mation about the experimental settings, evaluation metrics,
and additional results here.
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B.1. Experiments Settings

In the comparative experiment between our method and
baseline generative models, we tried our best to ensure they
shared the same generation goal. For our method, we man-
ually assigned an initial 3D velocity to each object. To
"interpret" this into text, we described the corresponding
dynamics and converted them into prompts such as, "The ele-
phant hops up and falls onto the ground" or "The book falls
and the orange rolls forward." All three baseline models
were prompted with the same text. Additionally, Kling sup-
ports "motion brush" inputs, which were provided alongside
the textual prompt. Fig. 11 illustrates examples of "mo-
tion brush" inputs, where we manually set the stable parts,
movable parts, and their trajectory.

B.2. Evaluation

In our main paper, we only present the quantitative results
of human evaluation. Here, we conduct further experiments
using GPT-4 and provide the details.

Human Evaluation. We designed a questionnaire to con-
duct human evaluation, as illustrated in Fig. 12. A total of 31
participants were recruited to complete the 27-page question-
naire. At the beginning, we provided an explanation of video
generation models to ensure that participants had a clear
understanding of the task. Each page of the questionnaire
contains an initial reference image, accompanied by a text
prompt describing the expected behavior in the video (e.g.,
"Red apple rolls on the table"). Four videos are presented on
each page in a random order, all corresponding to the same
initial condition and text prompt. Participants are instructed
to assess each video based on three dimensions. This de-
sign ensures a fair, consistent, and comprehensive evaluation
process.

GPT-4o Evaluation. To assess the quality of the gener-
ated videos, we also conducted evaluations using GPT-4o
for both our results and the baselines. The prompt is as fol-
lows: [caption=Prompt used for GPT-4o evaluation] I would
like you to evaluate the quality of four generated videos
based on the following criteria: physical realism, photore-
alism, and semantic consistency. The evaluation will be

Figure 11. Motion brush input for Kling. In all cases, we manu-
ally define the motion for each object by identifying the movable
part and drawing its trajectory. Additionally, we specify the stable
part of the object.

based on 10 evenly sampled frames from each video. Given
the original image and the following instructions: ’instruc-
tions’, please evaluate the quality of each video on the three
criteria mentioned above. Note that: Physical Realism mea-
sures how realistically the video follows the physical rules
and whether the video represents real physical properties
like elasticity and friction. To discourage completely stable
video generation, we instruct respondents to penalize such
cases. Photorealism assesses the overall visual quality of
the video, including the presence of visual artifacts, discon-
tinuities, and how accurately the video replicates details of
light, shadow, texture, and materials. Semantic Consistency
evaluates how well the content of the generated video aligns
with the intended meaning of the text prompt. Please pro-
vide the following details for each video, scores should be
ranging from 0-1, with 1 to be the best: Video 1: Physical
Realism Score: [a score]; Photorealism Score: [a score];
Semantic Consistency Score: [a score] Video 2: Physical
Realism Score: [a score]; Photorealism Score: [a score];
Semantic Consistency Score: [a score] Video 3: Physical
Realism Score: [a score]; Photorealism Score: [a score];
Semantic Consistency Score: [a score] Video 4: Physical
Realism Score: [a score]; Photorealism Score: [a score];
Semantic Consistency Score: [a score] Note that your output
should strictly follows the above format, with a ’;’ after each
score. Do not give any other explanations. The first image
is the input image. input image Here are 10 evenly spaced
frames from the generated video number idx + 1. generated
frames

B.3. Additional Results

show that both methods introduce unrealistic deformations.
DragAnything sometimes fails to maintain a stable back-
ground, even when manually set. MOFA demonstrates better
motion control but lacks realism as well. See the table below
for quantitative results. We provide additional quantitative
and qualitative results of our experiments.

Human Evaluation Results. We analyze the human eval-
uation scores further in Fig. 13. The distribution of scores
indicates that participants generally agree that most of our re-
sults are both physically realistic and semantically consistent.
Our method significantly outperforms baseline generative
models on these two criteria. However, the four models
perform comparably in terms of photorealism.

Additional Qualitative Results. Here, we present addi-
tional qualitative results in Fig. 14. The first row demon-
strates the "sandy" effect, where the material of the teddy
bear is transformed into sand. The last row illustrates a
multi-object collision scenario, where three apples collide
with one another. More results are available in video format
on our supplementary webpage.

Fig. 15 shows the results after VEnhancer’s
post-processing. Although VEnhancer recovers fine
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Figure 12. An example page of human evaluation questionnaire. In each page of the questionnaire, we explain the criteria in detail. We
provide the input image, the text prompt and four generated videos in a random order. Each video is followed by a evaluation matrix on a
five-point scale, from strongly disagree (1) to strongly agree (5).
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Figure 13. Human evaluation score distribution. Score distribution shows our method’s superiority in physical realism and semantic
consistency, with comparable performance across models in photorealism.

details, it can also introduce hallucinations. This illustrates a
fundamental trade-off between photorealism and physical
accuracy: integrating diffusion models into the pipeline
leverages their strong priors to compensate for reconstruc-
tion and rendering errors, but it cannot guarantee adherence
to real-world physics.

Fig. 16 shows the results of two open-sourced diffusion
models, MOFA-Video and DragAnything. Both methods in-

troduce unrealistic deformations: DragAnything sometimes
fails to maintain a stable background, even when manually
set. MOFA demonstrates better motion control but lacks
realism as well. Quantitative results of VBench scores in the
main paper support these findings.
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Input Generation (left→right: time steps)

Figure 14. More qualitative results. The first row demonstrates the "sandy" effect, transforming the teddy bear’s material into sand, while
the second and third rows showcase bouncing and rolling effects, respectively. The fourth row illustrates a multi-object collision scenario,
with three apples colliding with one another, and the final row highlights the system’s ability to generate a video from a painting.

Before VEnhancer After VEnhancer After VEnhancerBefore VEnhancer

Figure 15. Qualitative comparison of VEnhancer. After post-
processing by VEnhancer, more details are recovered and the video
appears to be more photorealistic.

B.4. Applications

Our video generation framework, PhysGen3D, enables a
range of exciting applications through its explicit represen-
tation. Here are just a few of the compelling use cases our
system supports:

MOFA-Video DragAnything

Figure 16. Qualitative results of MOFA-Video and DragAny-
thing. These two open-sourced diffusion models fail to keep back-
ground consistent and produce unrealistic deformations.

Camera controls. PhysGen3D’s 3D scene representation
inherently supports novel view synthesis. We demonstrate
this capability (see figure below) by extending our method
with minimal modifications: (1) outpainting and meshing
the background and (2) rendering from novel views. Re-
sults in Fig. 18 show good consistency across views while

17



Input Rendered Input RenderedInput Rendered

Figure 17. More On Limitations. The left two images show simulation failures, where unwanted floating points appear in the final rendering
results. The middle two images show reconstruction failures, where the wall is recognized as ground by mistake. The right two images
depict texture optimization failures, where the car fails to accurately reproduce the real roughness and metallic properties, resulting in an
unrealistic appearance.

Original Left Right Up

Figure 18. Camera controls. We provide a case demonstrating
the potential to perform camera controls on above our pipeline.
The left one is the only input image. The right three images are
generated with outpaiting and reconstruction.

maintaining environmental coherence.
Generate Video from Paintings. Thanks to the gener-

alization ability of our interactive 3D world reconstruction
pipeline, our method can extend beyond real photos to ac-
commodate other types of inputs, such as generated images
and paintings. The final row of Fig. 14 demonstrates the
generation of a video from a painting.

C. Limitations

In the main text, we present three failure cases, each high-
lighting a specific type of error in perception, simulation,
and rendering. Fig. 17 illustrates additional failures. One
involves incorrectly reconstructed meshes with unwanted
floating points. Although we have implemented floating
point removal during rendering, some points are too close to
the object to be detected. Another failure involves material
that is incorrectly estimated. The reflectance behavior of cars
poses a challenging optimization target, and inaccuracies in
inverse rendering result in unrealistic renderings. Failures
or inaccuracies may also occur in depth and light estima-
tion. However, these modules are relatively mature, and such
errors are comparatively rare.

Many of these failures stem from the inherently ill-
posed nature of the task, as reconstructing the full geom-
etry, physics, and textures from partial scene observations
requires substantial prior knowledge.

Currently, we only support a single collider surface, such
as the ground or a table. However, our pipeline has the po-
tential to set all stable components as colliders. Additionally,

each object is currently homogeneous in density and elas-
ticity. In the future, we may assign different materials to
different parts of an object, as demonstrated in [94].

Overall, our method is designed for object-centric scenes,
excelling at mimicking real-world physics for rigid and de-
formable objects. It also supports a variety of edits and
effects. However, reconstructing entire scenes for more com-
plex scenarios remains an open challenge.
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